
NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-1

4.4 Functional Analysis (Satisfies EIA/IS 731 FA 1.2 and iCMM PA 4)
Functional Analysis details the use of functional flow diagramming as a representative
structured analysis process that is the preferred approach of the Federal Aviation Administration
(FAA). In addition, this section covers several alternative approaches, as FAA system
engineers come in contact with organizations that apply techniques other than functional flow
diagramming. Therefore, it is necessary that the engineers be able to communicate with
members of those organizations and integrate their results with the work performed by other
organizations. The following paragraphs detail functional flow diagramming; alternative
approaches appropriate for systems and hardware; alternative models for problems to be solved
with computer software; and references that cover these techniques in more depth.

4.4.1 Introduction to Functional Analysis
The process of analyzing functions provides System Engineering (SE) with a functional system
description that becomes a framework for developing requirements and physical architectures.
Utilizing the Functional Analysis process significantly improves synthesis of design, innovation,
requirements development, and integration. The Functional Analysis process provides two key
benefits to SE: (1) it discourages single-point solutions, and (2) it describes the behaviors that
lead to requirements and physical architectures. The essential elements of Functional Analysis
are illustrated in Figure 4.4-1, which lists the key inputs necessary to initiate the task, providers,
process tasks, outputs required, and customers of process outputs. The beginning and ending
boundary tasks, as well as the intermediate tasks, are described in later paragraphs.

NAS SYSTEM ENGINEERING
VERSION 3.0 09/30/04

Process:

Perform Functiona
Next Higher Level Process:
Perform System Engineering

Process Objective:
Provide a functional description of a syst
product integration.

a) FAA management decisions
b) Legacy system
c) Integrated program plan
d) SEMP
e) Mission need statement
f) Requirements
g) Physical architecture
h) ICDs
i) Design analysis reports
j) Analysis criteria
k) Validated need
l) Constraints

a) EXT
b) EXT
c) ITP
d) ITP
e) RM
f) RM
g) Syn
h) IM
i) SpecEng
j) IA
k) V&V
l) RSK

Inputs

Providers
 SECTION 4.4

4.4-2

ID No.: 4.4 (iCMM PA 3)
Date: April 13, 2000

l Analysis Revision Date: September 30, 2004

Process Owner:
System Engineering Council

em that becomes a framework for synthesis that significantly improves innovation, requirements definition, and

PROCESS TASKS

Beginning Boundary Task
Describe the operational mission, environment,

and requirements

• Define top level functions
• Organize functions into logical relationships
• Decompose functions into lower level

functions (iterative)
• Evaluate alternative decompositions
• Document functional analysis baseline

Ending Boundary Task
Deliver completed functional architecture

a) Functional architecture

– Baseline functional architecture
– Functional interface list
– Alternative decomposition
– Functional flow diagrams
– Functional time lines/sequences
– Data flow diagrams and threads
– N2 charts

b) Concept of operations
c) NAS CONOPS
d) Planning criteria
e) OSED
f) Constraints
g) Concerns/issues
h) Tools/analysis requirements

a) RM, Syn, TS, IM, SpecEng , CM,

V&V
b) ITP, RM, IM, SpecEng, V&V
c) ITP
d) ITP
e) RM, Syn, TS, IM, SpecEng, CM,

LCE, V&V
f) TS, Syn
g) RSK
h) IA

Figure 4.4-1. Functional Analysis Process-Based Management Chart

Outputs

Customers
Lifecycle Phase

!

!

!

!

!

Mission Analysis
Investment Analysis

Solution Implementation

In-Service Management

Service Life Ext.

Disposal

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-3

Systems may be described using two different facets. First, a system may be described as a
physical architecture with elements that interact with themselves and the system environment in
accordance with a predefined process to achieve the system mission. At the same time, a
system may be described by the functions that it performs. A system is intended to satisfy
predefined functions, with the highest-level function defined as the stakeholder need (also the
ultimate system requirements). A function is a characteristic action or activity that has to be
performed in order to achieve a desired system objective (or stakeholder need). A function
name is stated in the form of an action verb followed by a noun or noun phrase; it is an action
that describes the desired system behavior. Examples of common functions include “read
book,” “eat food,” and “go to store.” A function is accomplished by one or more system
elements composed of equipment (hardware, software, and firmware), people, and procedures.
The function occurs within the system environment and is performed to achieve system
operations. In Functional Analysis, because a function may be accomplished by more than one
system element, functions are unable to be allocated. Rather, functions are used to develop
requirements, which are then allocated to solutions in the form of a physical architecture.
When unprecedented systems or systems are being developed that radically differ from those
currently in use, the approach named “form follows function” is applied. The first function to
identify stems from the need, which is then decomposed into lower levels of needed
functionality. The functional description is translated into the physical by assigning functionality
to requirements and requirements into a Physical Architecture. While function names may be
allocated to specific Physical Architecture entities directly, it is often the case that some
combination of two or more architectural entities accomplishes one function. The FAA
preference is to translate functions into primitive performance requirements and then allocate
these performance requirements to physical architecture entities.

4.4.1.1 Functional Analysis Objectives
The Functional Analysis process helps to ensure that:

• All facets of a system’s lifecycle, as illustrated in Figure 4.4-1, are covered from
development to production, operation, and support

• All functional elements of the system are described, recognized, and defined

• All system concepts and requirements for specific system functions are related

• Requirements definition is improved

• Product integration is improved

• New and innovative designs and solutions are incorporated

4.4.1.2 Process Overview
Functional Analysis examines a system’s functions and subfunctions that are necessary to
accomplish the system’s operation or mission. It describes what the system does, not how it
does it. Functional Analysis is conducted at the level needed to support later synthesis efforts,
with all operational modes and environments included. Each function required to meet the
operational needs of a system is identified and defined; once defined, the functions are then
used to define the system requirements, and a functional architecture is developed based on
the identified requirements. The process is then taken to a greater level of detail as the
identified functions are further decomposed into subfunctions, and the requirements and
physical architecture associated with those functions are each decomposed as well. This
process is iterated until the system is completely decomposed into basic subfunctions, and each
subfunction at the lowest level is completely, simply, and uniquely defined by its requirements.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-4

In this process, the interfaces between each of the functions and subfunctions are fully defined,
as are the interfaces with the environment and external systems. The functions and
subfunctions are arrayed in a Functional Architecture to show their relationships and interfaces
(internal and external). Figure 4.4-2 illustrates the Functional Analysis process flow.
Functions shall be:

• Arranged in their logical sequence

• Well defined in their inputs, outputs, and functional interfaces (internal and external)

• Traceable from beginning to end conditions

• Analyzed, determined, and defined for time-critical requirements

• Successively established from the highest to lowest level for each function and interface

• Defined in terms of what needs to be accomplished in verb–noun combinations without
describing how it is to be accomplished

• Traceable downward through successive functional decompositions

Figure 4.4-2. Functional Analysis Process Flow and Interface with

Physical Architecture and Requirements

It is recommended that the Functional Analysis process be conducted in conjunction with
Requirements Management (Section 4.3), Synthesis (Section 4.5), and Trade Studies (Section
4.6) (Figure 4.4-3) to:

Ti
m

e
or

 p
ro

gr
am

 p
ha

se

Function
(Level 1)

OSED
MNS
CONOPS

Requirements

ArchitectureFunction
(Level 2)

Requirements
Ph

ys
ic

al

NAS Architecture
Defines

Defines

Define Define

Derive

Refine Refine

Constrain
Decompose

Function
(Level n) Requirements ArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

Ti
m

e
or

 p
ro

gr
am

 p
ha

se

Function
(Level 1)
Function
(Level 1)

OSED
MNS
CONOPS

OSED
MNS
CONOPS

Requirements

ArchitectureFunction
(Level 2)
Function
(Level 2)

Requirements
Ph

ys
ic

al

NAS ArchitectureNAS Architecture
Defines

Defines

Define Define

Derive

Refine Refine

Constrain
Decompose

Function
(Level n)
Function
(Level n) RequirementsRequirements ArchitectureArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-5

• Define successively lower-level functions required to satisfy higher-level requirements
and to define increasingly detailed sets of Functional Architectures

• Define mission- and environment-driven performance requirements and determine that
higher-level requirements are satisfied

• Flow down performance requirements and design constraints

• Refine the definition of product and process solutions
4.4.2 Inputs to Functional Analysis
The more that is known about a system, the more complete the Functional Architecture. At the
highest level of Functional Analysis for the FAA (the National Airspace System (NAS)), only the
Mission Need Statement (MNS) may be available as input. The needs reflected in the MNS are
translated into a Concept of Operations (CONOPS). A CONOPS is a high-level form of
Functional Analysis that is solely derived from the user’s perspective. It is recommended that
the CONOPS serve as a baseline for the more detailed Functional Analyses to follow.
(Paragraph 4.4.4.2 provides more information on CONOPS.) As iterations progress, it is
recommended that higher-level Physical Architectures and Requirements be considered as they
become available. If the output of the Requirements Management (Section 4.3) task is
incomplete, the Functional Analysis task reveals missing Requirements and helps to refine or
clarify others. Figure 4.4.3 depicts Functional Analysis’s process flow, while Figures 4.4-4 and
4.4-5 illustrate several representative inputs and outputs to/from Functional Analysis.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-6

OSED/MNS

Higher
Level

Higher
Level

Higher Level
Physical

Higher Level
Requirements

Define Top-
Level

Organize
Functions

Decompose
Functions

Evaluate
Alt. Decomps.

FA
Complete?N Document

FA Baseline
Y

CONOPS

Identify/Decompose
Derive

Functional
Architecture Requirements

Requirements Identify
Alternatives

Allocate
Requirements

Define
Phys. Arch.

Document
Physical

Architecture

Conduct
Trade Study

Trade Study
Report

Functional
Analysis

Requirements
Management

Synthesis

Trade

SE
Element Input Process Flow Output

Figure 4.4-3. Functional Analysis Process Flow

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-7

 Figure 4.4-4. Several Representative Inputs to Functional Analysis

Figure 4.4-5. Several Representative Outputs of Functional Analysis

The following is a more comprehensive list of the inputs to Functional Analysis:

• FAA Management Decisions

• Information on Legacy Systems

• Planning documents, such as the Integrated Program Plan

Functional
Analysis

Functional
Analysis

Documentation

CONOPS
Including OSED

Issues and
Concerns

Requirements
Management

Synthesis of
Alternatives

Specialty
Engineering

Risk
Management

Validation &
Verification

Interface
Management

Compliance info

MNS

Existing
Architectures

Requirements
Documents

Program
Decisions

Program
Constraints

Functional Analysis

Functional
Analysis

Documentation

CONOPS/OSED

Issues and
Concerns

MNS

Existing
Architectures

Requirements
Documents

Program
Decisions

Program
Constraints

Functional Analysis

Functional
Analysis

Documentation

CONOPS/OSED

Issues and
Concerns

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-8

• NAS Level (and program, if available) System Engineering Management Plan

• Defined NAS capability shortfalls and/or needs in the MNS (including validated needs
statement)

• Requirements, such as any existing specifications and standards requirements,
including requirements documents (reference documents)

• Program decisions (such as Constraints relating to existing hardware and software)

• Existing Physical Architectures

• Higher-level Functional Architectures

• Information on interfaces, including Interface Control Documents

• Design Analysis Reports

• Analysis Criteria
4.4.3 Functional Analysis Process Tasks
The Functional Analysis process is summarized in Figure 4.4-1. The five major process tasks
listed in Figure 4.4-1 are described in the remainder of this section.
4.4.3.1 Task 1: Define Top-Level Functions (From Inputs)
The first task in defining the system from a functional standpoint is to review the MNS, existing
Operational Services and Environmental Descriptions (OSED), and any existing requirements
documents to ensure a complete understanding of the top-level system missions/functions,
environments, Requirements, and imposed Constraints. The MNS defines the needs the
system is expected to meet. The CONOPS is developed from the MNS and normally includes
an OSED. (The OSED is defined in Paragraph 4.4.4.2.1.) A system understanding from the
perspective of these documents ensures that the system’s relationship to its environment and
external systems is considered during the development of the primary system functions.
Figure 4.4-6 is a simplified example of an MNS and CONOPS for an office requiring the
capability to record and store information from a computer. This example is used only to
develop a sample functional flow diagram (FFD) (Paragraph 4.4.3.2.2.1). An actual MNS and
CONOPS include much greater detail.

Figure 4.4-6. Mission Need Statement and Concept of Operations

The formats of all system outputs will be incorporated
into the storage and retrieval system to ensure all output

can be stored and retrieved without alteration.

Produce outputs from computer applications that can be
permanently stored and retrieved without alteration

+

Start with the
Mission Need

Concept of
Operations

The formats of all system outputs will be incorporated
into the storage and retrieval system to ensure all output

can be stored and retrieved without alteration.

Produce outputs from computer applications that can be
permanently stored and retrieved without alteration

+

Start with the
Mission Need

Concept of
Operations

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-9

The system’s primary mission(s) is defined using the MNS and any available system
descriptions, such as the OSED, the system’s Requirements, and Constraints. This mission(s)
is the primary function that the system fulfills, and it is named using the guidelines and naming
convention described in the “Introduction to Functional Analysis” (Paragraph 4.4.1).
In addition, the internal and external interfaces (including ambient and operational
environments) of the system are identified, and the functional relationships are defined. In the
next task, these relationships are depicted through structured analysis using sequence
diagrams, FFDs, and N2 diagrams, which meet nearly all FAA program needs. In these
depictions—examples of which appear in Figures 4.4-9 through 4.4-20—a large rectangular box
represents the system, and the smaller boxes represent external elements outside of the main
system. Flow arrows represent interfaces between the system and the external elements that
describe which external element the system is transmitting to/receiving from and what data is
being transmitted/received. Figure 4.4-7 shows the standard symbols used in these diagrams.
(“Functional Analysis Tools and Techniques” (Paragraph 4.4.5) provides other techniques that
may be used with approved tailoring to the process.)

 Figure 4.4-7. Symbology Template for Functional Flow Diagramming

In Task 1, the necessary functions that provide the required capabilities of the system, as
specified by the need or Requirements, are defined. The activity represented by each of the
functions shall be well defined, able to be implemented, and testable; and the interfaces to other
functions shall be as simple as possible. It is recommended that these functions be developed
with an eye toward the conversion of the Functional Architecture into Requirements and
Requirements into a Physical Architecture. The development of complementary Functional and
Physical Architectures requires multiple iterations between Functional Analysis, Requirements
Management (Section 4.3), and Synthesis (Section 4.5).

Function (or Node)

Transmit
RF

iRD

Document

Connector Summing (and)

Alternative Function Data

Or

Y

Decision

Terminator

4.5.3

Off-Page Connector

N

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-10

Figure 4.4-8 lists functions based on the example MNS and CONOPS depicted in Figure 4.4-6.
There are many approaches to describe these functions. The main criterion for task completion
is a comprehensive list of the functions the system has to perform in order to meet its mission.
For this task, the list does not need to follow a logical order.

Figure 4.4-8. List of Primary Functions

An analysis of operations and environment may be tailored to represent the available source of
information. If detailed references to environmental data are absent in the initial Requirements
Documents, Quality Function Deployment or other methods described in Requirements
Management may be used as supplements to elicit the information necessary to support follow-
on Physical Architecture and Requirements tasks.
Affirmative answers to the following questions signify completion of Task 1:

• Have all missions, phases, and modes of operation been considered for the system?

• Have all functional elements been properly identified?

• Have all functional interfaces of the system to and from the environment been
adequately identified and listed (physical/functional interface, connection parameters
and modes, etc.)?

• Have the results of this review been captured in a list that identifies the system’s mission
and primary functions as well as interfaces with other systems and the environment?

4.4.3.2 Task 2: Organize Functions Into Logical Relationships
The function list developed in Task 1 serves as an input to Task 2. The function list includes the
central functions required for the system to accomplish its mission, but the list is not necessarily
arranged in a sequence or logical relationship. During Task 2, the functions are arranged in at
least one of the primary logical flow diagrams, which are applicable to most programs and
indicate relationships based on function sequence and/or functional flow (input-function-output).
The arrangement of the functions includes independent functions in parallel and dependent
functions in series (e.g., when completion of the upstream function is necessary in order to
begin the downstream function). A discussion of other techniques (used only when tailoring is
approved) is included in “Functional Analysis Tools and Techniques” (Paragraph 4.4.5).

List of Functions
• Mission or central function: Produce

outputs from computer applications
– Provide output
– Process output
– Produce output
– Generate output
– Accept output information
– Store output information
– Retrieve stored output information

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-11

4.4.3.2.1 Sequence Relationships
The sequence family of relationships includes both sequence and timing. Sequence
relationships shall be used if sequence or timing is critical to the overall system function and
when the relationships are simple. When sequencing is selected, the functions are arranged in
order of sequence (i.e., preceding functions depicted before subsequent functions).
4.4.3.2.1.1 Network Diagrams
Sequence relationships may be depicted as network diagrams. These diagrams shall be used if
sequence is important to the function operation, but timing is not necessarily critical. Network
diagrams display functions and sequential dependencies in a network format. A box (called a
node) represents each function, and a line connecting two boxes represents the sequential
dependency between the two functions. Figure 4.4-9 depicts a simple network diagram. Some
analysts apply an action on line pattern, where the nodes represent events that partition the
actions (on the lines) into time frames.

Figure 4.4-9. Depiction of a Sequence Relationship Using a Network Diagram

4.4.3.2.1.2 Time Line Sequence Diagrams
Another way to organize functions in sequence is to use time line sequence diagrams. A time
line sequence diagram depicts each function as a line or rectangle on a chart similar to a Gantt
chart. The functions are stacked with preceding functions depicted to the upper left of
subsequent functions. Time line sequence diagrams shall be used when a sequence
relationship is selected, and timing is critical to the function operation. Figure 4.4-10 depicts a
simple graphical deterministic time line sequence diagram.

G enerate
O utput

G enerate
O utput

Tim e

Fu
nc

tio
n

Accept
Info

Accept
Info

Process
Output

Process
Output

Produce
O utput

Produce
O utput

Provide
Output

Provide
Output

-3 -2 -1 0 2

Retrieve
Output

Retrieve
Output

Store
O utput
Store
O utput

1 3 4

Figure 4.4-10. Depiction of a Sequence Relationship
Using a Time Line Sequence Diagram

Generate OutputGenerate Output Accept InfoAccept Info Process OutputProcess Output Produce OutputProduce Output

Provide OutputProvide OutputStore OutputStore OutputRetrieve OutputRetrieve Output

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-12

Time line sequence analysis considers functional durations and provides a more definitive
description of the functional sequences than network diagrams are able to convey. It
graphically depicts the concurrence, overlap, and sequential relationships of functions and
related tasks. Time line sequence analyses are important in the tradeoff process between man
and machine, including decisions regarding manual and automatic methods and allocation of
times to subfunctions. In addition to defining subsystem/component time requirements, time
line sequence analysis is used to develop Trade Studies (Section 4.6) in areas other than time
considerations (e.g., is the spacecraft location to be determined by the ground network or by
onboard computation using navigation satellite inputs?). Figure 4.4-11 depicts a maintenance
time line sheet (TLS) that shows that the availability of an item (distiller) is dependent upon the
concurrent completion of numerous maintenance tasks. Furthermore, the figure illustrates the
traceability to higher-level requirements by referencing the appropriate FFD.

Figure 4.4-11. Time Line Sheet for Maintenance of a Distiller

Time line sequence analysis is performed on areas where time is critical to mission success,
safety, utilization of resources, minimization of downtime, and/or increasing availability. The
following areas are often categorized as time-critical:

• Functions affecting system reaction time

• Mission turnaround time

• Time countdown activities

• Functions requiring time line sequence analysis to determine optimum equipment and/or
personnel utilization

Time line sequence analysis supports the development of design requirements for operation,
test, and maintenance functions (additional techniques such as mathematical models and
computer simulations may be necessary). In addition, the TLS is used to perform and record
the analysis of time-critical functions and functional sequences. For time-critical functional
sequences, it is necessary to specify the time requirements with associated tolerances.

(A) FUNCTION
PERFORMANCE PERIODIC MAINT
ON VC DISTILLER

(B) LOCATION-
ENGINE
ROOM 3

(C) TYPE OF MAINT-
SCHEDULED 200
HR PM

TIME LINE SHEET

(D) SOURCE
FFBD
37.5x2

FUNCTION & TASKS
RAS
37.5x17

(F) TIME - HOURS

.5 1.0
TASK
SEQ.#

TASK
MEMBERS CREW

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.11

INSPECT COMPRESSOR BELT
LUBRICATE BLOWDOWN PUMP
CHECK MOUNTING BOLTS
CLEAN BREATHER CAP
CLEAN FOOD STRAINER
REPLACE OIL
REPLACE FILTER
REPLACE V-DRIVE BELT
CLEAN & INSPECT CONTROL
PANEL
INSTALL NEW DIAPHRAGMS
CLEAN CONTROLS

A2
B1
B1
B1
C1
B1
C1
D1
C1

A1
B1

.3H

.2H
.1H

.1H
.5H

.2H
.4H
.9H

.1H
.7H
.1H

(E)

TOTAL MAN-HOURS - - 3.6 MH
ELAPSED TIME - - - - - 1.0 H

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-13

4.4.3.2.2 Functional Flow (Input-Function-Output) Logical Relationships
The FFD family consists of a group of analyses that depicts functional (input-function-output)
relationships between functions. This family includes the Department of Defense standard
FFDs, N2 diagrams, Integrated Definition for Function Modeling (IDEF) techniques, which are
described in the following paragraphs, and the Unified Modeling Language (UML), which is
described in Paragraph 4.4.5.2.6.2.
4.4.3.2.2.1 Functional Flow Diagrams
The FFD, the FAA’s recommended technique for Functional Analysis, is a multi-tier, time-
sequenced step-by-step diagram of the system’s functional flow. FFDs usually define the
detailed, step-by-step operational and support sequences for systems, but they are also used
effectively to define processes in developing and producing systems. The software
development processes also use FFDs extensively. In the system context, the functional flow
steps may include combinations of hardware, software, personnel, facilities, and/or procedures.
Although functional flow relationships are more complicated, they also convey more information
than sequence diagrams. In the FFD method, the functions are organized and depicted by their
logical inputs and outputs. Each function is shown in relation to the other functions by how the
inputs and outputs feed and are fed by the other functions. A node labeled with the function
name depicts each function. Arrows leading into the function depict inputs, while arrows leading
out of the function depict outputs. Figure 4.4-12 depicts the output of function F0 as an input to
function F1.

Figure 4.4-12. Functional Flow Relationship

With FFDs, the function is the machine or process that uses inputs to produce outputs. To
illustrate: If a turbine engine is the system, then the function is the conversion of oxygen and
fuel into mechanical energy in the form of thrust or torque. In Figure 4.4-13, the function is
depicted as a box (node) with a function title of “Generate Torque/Thrust.” Inputs are the
elements needed for the function to operate correctly; the production of mechanical energy
using a turbine engine requires oxygen and fuel. Therefore, oxygen and fuel are inputs to that
function. Inputs are depicted as arrows leading into the functional node with the input arrows
labeled appropriately. The output is the product of the function. In Figure 4.4-13, the engine

F3
Produce
Output

F3
Produce
Output

F0
Generate
Output

F0
Generate
Output

F1
Accept

Information

F1
Accept

Information

F2
Process
Output

F2
Process
Output

F4
Provide
Output

F4
Provide
Output

F0 output
becomes
F1 input

F1 output
becomes
F2 input

F2 output
becomes
F3 input

F3 output
becomes
F4 input

And so on….

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-14

function generates the “Torque/Thrust.” The output is depicted as the arrow leading out of the
functional node with the output arrow labeled appropriately.

Figure 4.4-13. Input-Function-Output Relationship

NOTE
When IDEF techniques (Paragraph 4.4.3.2.2.3) are being used, controls and
mechanisms may be added. Controls are elements that manage the function and
are outputs of other functions, while mechanisms are elements that enable the
function to work. Controls are depicted as arrows entering the function from the
top, and mechanisms are depicted as arrows entering the function from the
bottom.

The functions depicted so far have been serial functions; however, many functions are parallel
(i.e., they are functions that (1) independently feed the same downstream function, and/or (2)
occur simultaneously). Figure 4.4-14 illustrates parallel functions.

Figure 4.4-14. Parallel Functions

Generate
Torque/Thrust

Generate
Torque/Thrust

Fuel
Oxygen

Torque/Thrust Next
Function

Next
Function

Preceding
Function

Preceding
Function

Control Fuel

Combustion

Functional
Flow

Diagram

Sequential
Diagram

Parallel

Parallel

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-15

Figure 4.4-15 depicts a functional flow organization of the functions, in which functions are
broken down into subfunctions using the techniques described in Task 2. This figure represents
a simplified FFD, in which the inputs and outputs are not labeled, and the controls and
mechanisms are not identified. Functional Analysis is performed to the level of detail needed to
depict the functional description of the system.
Figure 4.4-15 also shows multiple functional levels; however, only the top level is complete.
Each lower level shows an example expansion of one function. For example, at the second
level, the top-level function F1 is expanded into its second-level functions, F1.1 through F1.6.
At the third level, second-level function F1.4 is expanded. Finally, at the fourth level, function
F1.4.3 is expanded. Each level indicates a different example of typical functional flow paths.
Usually, only one or two levels are shown in one diagram to avoid confusion.

Figure 4.4-15. Generic Functional Flow Diagram Example

Adherence to the following rules promotes common understanding of FFDs:

• Number top-level functions with even integers and zero decimals (e.g., 1.0, 2.0, etc.) and
cover the complete span of anticipated lifecycle functions

• Depict inputs to functions as entering from the left side and outputs as leaving from the
right side

• Depict mechanisms as entering from the bottom and controls as entering from the top

• Display lower-level functions as emanating from the bottom

• Define the name of the function inside the box, replacing F1, F2, etc.

• Indicate a reference function (ref) at the beginning and end of all functional sequences,
except at the top level

TOP
LEVEL F1

1.0
F2

2.0
F3

3.0

F4

4.0

F5

5.0

F6

6.0

F7
7.0

2nd
LEVEL F1 F1.1 F1.4 F2

1.2

1.3

2.0 REF1.0 REF 1.1 1.4F1.2

F1.3

3rd
LEVEL F1.4 F1.4.1

F1.5 F1.4.2

1.4 REF 1.4.1 1.4.2 1.4.3
GG

G

4th
LEVEL

REF
F1.4.3

F1.4.3.1
F1.4.3.2

F1.4.3.3

1.4.3.1
1.4.3.2

1.4.3.3

F1.5

F1.6

F1.5

F1.6

1.5 REF

1.6 REF
F1.4.3

F1.5

F1.6

1.5 REF

1.6 REF

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-16

• Use an “OR” gate to indicate alternative functions; use an “AND” gate to indicate
summing functions, where all functions are required (Figures 4.4-7 and 4.4-16)

• Indicate a “GO” “NO GO” sequence with an arrow leaving the right side of the function
with the letter “G” for “GO” and an arrow out the bottom with “G-bar” for “NO GO”

• As is customary, when the second level or lower level is shown on a separate page, list
the title of the function at the top center of the page for reference

• Typically, do not show the information flow, content of each functional step, and timing
details on FFDs

Figure 4.4-16. Functional Flow Diagram Example

4.4.3.2.2.2 Functional N2 Diagrams
The N2 diagram is a systematic approach to identify, define, tabulate, design, and analyze
functional and physical interfaces. A functional N2 diagram depicts the interfaces between
functions in a system. The N2 diagram is a visual matrix that requires the user to generate
complete definitions of the system functional interfaces in a rigid, bidirectional, fixed framework.
A basic N2 diagram is illustrated in Figure 4.4-17.

 9.2.4

Abbreviations/Notes:
“And” Gate: Parallel Function
“Or” Gate: Alternative Function

Ref 9.2, Provide Guidance

Functional
Description

3.5 Ref 9.2.3

Function
Number

See Detail
Diagram

 9.2.2 Go Flow
Ref.
f1.3.1

G

See Detail Diagram

Summing
Gate

Tentative
Function

1.1.2 Ref.
Interface Reference
Block (Used on First-
and Lower-Level
Function Diagrams
Only)

9.2.3

Sys
Malf.

.

See Detail
DiagramLeader Note

No Go Flow

Alternative
Functions

Parallel
Functions

Scope
Note:

2nd Level Flow Level Designator

Functional Flow Block
Diagram Format Title Block and Standard Drawing Number

 G

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-17

Figure 4.4-17. Functional N2 Diagram

The N2 diagram customarily is used to develop data interfaces, primarily in the software areas;
however, it also may be used to develop other interfaces, including functional and physical
interfaces. In this method, the system functions are placed on the diagonal axis; the remainder
of the squares in the N x N matrix represents the interface inputs and outputs. The presence of
a blank square indicates that there is no interface between the respective system functions.
Data flows in a clockwise direction between functions (i.e., the symbol F1 ! F2 indicates data
flowing from function F1 to function F2; the symbol F2 " F1 indicates the feedback). The
transmitted data is defined in the appropriate squares. The diagram is complete when each
function has been compared to all other functions. The N2 diagram may be used in
successively lower levels down to the component functional level.
N2 diagrams are a valuable tool for not only identifying functional interfaces, but also for
pinpointing areas where conflicts may arise between functions so that system integration
proceeds smoothly and efficiently.
4.4.3.2.2.3 Integrated Definition for Function Modeling Diagrams
IDEF is a common modeling tool for conducting analysis, development, and integration of
information technology systems and software engineering analysis. Whereas FFDs show the
functional flow of a product, IDEF diagrams show:

• Data flow

• System control

• Flow of lifecycle processes
The U.S. Air Force originally developed IDEF for manufacturing planning. IDEF is a compound
acronym that stands for Integrated Computer-Aided Manufacturing Definition. Originally called
IDEF, other IDEF languages have since been developed, forcing the languages to adopt
numbering system; thus, this technique is now called IDEF 0. IDEF 0 has demonstrated an
ability to depict a variety of engineering, operational, manufacturing, and other types of
processes at any level of detail. It provides disciplined, rigorous, and precise descriptions while
promoting standardization in use and interpretation.

Input

Output

Function
1

(F1)

Function
2

(F2)

Function
3

(F3)

Function
4

(F4)

Function
5

(F5)
Output

Input

F1

F2

F1

F3

F1

F5

F1

F4

F1

F2

F1

F3

F1

F4

F1

F5

F2

F3

F2

F4

F2

F5

F3

F4

F3

F5

F4

F5

F2

F3

F2

F5

F3

F4

F3

F5

F4

F5

F2

F4

Input

Output

Function
1

(F1)

Function
1

(F1)

Function
2

(F2)

Function
2

(F2)

Function
3

(F3)

Function
3

(F3)

Function
4

(F4)

Function
4

(F4)

Function
5

(F5)

Function
5

(F5)
Output

Input

F1

F2

F1

F2

F1

F2

F1

F3

F1

F3

F1

F3

F1

F5

F1

F5

F1

F4

F1

F4

F1

F4

F1

F2

F1

F2

F1

F2

F1

F3

F1

F3

F1

F3

F1

F4

F1

F4

F1

F4

F1

F5

F1

F5

F1

F5

F2

F3

F2

F3

F2

F3

F2

F4

F2

F4

F2

F4

F2

F5

F2

F5

F2

F5

F3

F4

F3

F4

F3

F4

F3

F5

F3

F5

F3

F5

F4

F5

F4

F5

F4

F5

F2

F3

F2

F3

F2

F3

F2

F5

F2

F5

F2

F5

F3

F4

F3

F4

F3

F4

F3

F5

F3

F5

F3

F5

F4

F5

F4

F5

F4

F5

F2

F4

F2

F4

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-18

IDEF is a model composed of a hierarchical series of diagrams, text, and a glossary that are
cross-referenced. The two primary modeling components are functions and data objects that
interrelate the functions. As shown in Figure 4.4-18 (IDEF box format), the position at which the
arrow attaches to a box conveys the role of the data object interface. These roles consist of:

• Input

• Mechanism

• Output

• Control

Figure 4.4-18. Integrated Definition for Function Modeling Function Diagram

The inputs, the data objects acted upon by the function or operation, enter from the left. The
mechanism (additional support to perform the function) arrow attaches to the box from the
bottom. The outputs of the function leave the function box from the right. The controls enter the
top of the box.
The IDEF process begins with the identification of the prime function to be decomposed. This
function is identified on a top-level context diagram that defines the scope of the particular IDEF
analysis. Figure 4.4-19 illustrates a top-level context diagram for an information system
management process. From this diagram, lower-level diagrams are generated. An example of
a derived diagram—called a “child” in IDEF terminology—for a lifecycle function is shown in
Figure 4.4-20.

Control

Function Name
Function
Number

Mechanism

Input Output

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-19

Figure 4.4-19. Top-Level Context Diagram

Figure 4.4-20. Derived Diagram (“Child” in

 Integrated Definition for Function Modeling Terminology)

Affirmative answers to the following questions signify completion of Task 2:

• Are all functions in the function list depicted?

• Are all functions written in the form verb–noun format?

• Are all functional interfaces depicted graphically?

A0F
Node:

Maintain Reparable Spares (FEO)
Title:

pg. 4-5
Number:

Remove
and

Replace

Schedule
Into

Shop 2

1

Inspect
or

Repair 3

Monitor
and

Route 4

Detected or Suspected Malfunction, or
Item is Scheduled for Bench-Check

In-Service
Asset

Spare
Asset

Reparable
Asset

Replaced Asset

Status Records

Supply
Parts

Completed
Asset

Replacement
or Original
(Repaired) Assets

Awaiting
Parts

Asset
(Before
Repair)

Asset
(After

Repair)

Spare or
NRTS AWP

A0F
Node:

Maintain Reparable Spares (FEO)
Title:

pg. 4-5
Number:

Remove
and

Replace

Schedule
Into

Shop 2

1

Inspect
or

Repair 3

Monitor
and

Route 4

Detected or Suspected Malfunction, or
Item is Scheduled for Bench-Check

In-Service
Asset

Spare
Asset

Reparable
Asset

Replaced Asset

Status Records

Supply
Parts

Completed
Asset

Replacement
or Original
(Repaired) Assets

Awaiting
Parts

Asset
(Before
Repair)

Asset
(After

Repair)

Spare or
NRTS AWP

A0F
Node:

Maintain Reparable Spares (FEO)
Title:

pg. 4-5
Number:

Remove
and

Replace

Remove
and

Replace

Schedule
Into

Shop

Schedule
Into

Shop 2

1

Inspect
or

Repair

Inspect
or

Repair 3

Monitor
and

Route

Monitor
and

Route 4

Detected or Suspected Malfunction, or
Item is Scheduled for Bench-Check

In-Service
Asset

Spare
Asset

Reparable
Asset

Replaced Asset

Status Records

Supply
Parts

Completed
Asset

Replacement
or Original
(Repaired) Assets

Awaiting
Parts

Asset
(Before
Repair)

Asset
(After

Repair)

Spare or
NRTS AWP

Program Charter

Plan New
Information

Program

Program
Team

Issues
Program

PlanOperations
Data

QA/A-0 Manage Information Resources

Purpose: The assessment, planning, and streamlining of information
management functions.

Viewpoint: The Information Integration Assessment Team.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-20

• Does the depiction show end-to-end functional relationships?

• Are parallel and serial relationships accurately depicted?
4.4.3.3 Task 3: Decompose Higher-Level Functions Into Lower-Level Functions
In this task, higher-level functions are decomposed into subfunctions, with specificity increasing
at each level of decomposition. Functional decomposition is performed using the techniques
described in Tasks 1 and 2 with respect to sequence and logical diagramming or alternatively
with the techniques described in “Functional Analysis Tools and Techniques” (Paragraph 4.4.5).
The stepwise decomposition of a system basically is a top-down approach to problem-solving.
Shown graphically in Figures 4.4-21 through 4.4-24, the decomposition is carried to a level at
which the functions have been totally decomposed into basic subfunctions, and each
subfunction at the lowest level is completely, simply, and uniquely defined by its Requirements.
This means that functional decomposition continues as long as there is a further need to define
lower-level Requirements. When the requirements development process ceases, Functional
Analysis may cease.
The objective of Task 3 is to develop a hierarchy of Functional Analysis diagrams that describes
the functions at all levels of the system. This hierarchy is only a portion of the Functional
Architecture, which is not complete until all Requirements and other Constraints have been
appropriately decomposed.

Figure 4.4-21. Decomposition of Higher-Level Functions into Lower-Level Functions

Ti
m

e
or

 p
ro

gr
am

 p
ha

se

Requirements

ArchitectureFunction
(Level 1)

Requirements

Ph
ys

ic
al

NAS Architecture
Defines

Defines

Define

Refine Refine

Constrain
Decompose

Function
(Level n) Requirements ArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

Ti
m

e
or

 p
ro

gr
am

 p
ha

se

Function

NEED

NAS CONOPS
OSED

Requirements

ArchitectureFunctionFunction Requirements

Ph
ys

ic
al

NAS ArchitectureNAS Architecture
Defines

Defines

Define

Refine Refine

Constrain
Decompose

Function
(Level n)
Function
(Level n) RequirementsRequirements ArchitectureArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

(System
CONOPS) (MNS)

Ti
m

e
or

 p
ro

gr
am

 p
ha

se

Requirements

ArchitectureFunction
(Level 1)
Function
(Level 1)

Requirements

Ph
ys

ic
al

NAS ArchitectureNAS Architecture
Defines

Defines

Define

Refine Refine

Constrain
Decompose

Function
(Level n)
Function
(Level n) RequirementsRequirements ArchitectureArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

Ti
m

e
or

 p
ro

gr
am

 p
ha

se

Function

NEED

NAS CONOPS
OSED

Requirements

ArchitectureFunctionFunction Requirements

Ph
ys

ic
al

NAS ArchitectureNAS Architecture
Defines

Defines

Define

Refine Refine

Constrain
Decompose

Function
(Level n)
Function
(Level n) RequirementsRequirements ArchitectureArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

Constrain

(System
CONOPS) (MNS)

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-21

Figure 4.4-22. Another View of Decomposition of Higher-Level
Functions into Lower-Level Functions

Task 3 is performed iteratively using the steps and techniques described in Tasks 1 and 2.
Since higher-level functions exist for this task, the subfunctions are based on the higher-level
functions developed in the previous tasks. In Figure 4.4-23, which uses the functions list from
Figure 4.4-8, function F3 is decomposed into subfunctions labeled as the second level. Next,
the functions in the second level are further decomposed to the third level. This process
continues until all the functions are totally decomposed into basic subfunctions, and each
subfunction at the lowest level is completely, simply, and uniquely defined by its Requirements.
At each level, Functional Analysis feeds Requirements Management (Section 4.3) and
Requirements feeds Synthesis (Section 4.5), as shown in Figure 4.4-21 and further illustrated in
Figures 4.4-24 through 4.4-27.

Figure 4.4-23. Higher-Level Functions Broken Down into Lower-Level Subfunctions

1st Level

F3
Produce
Output

F0
Generate
Output

F1
Accept

Information

F2
Process
Output

2nd Level
F3.1

Select
Media

F3.3
Record Info

on Media

F4
Provide
Output

F4 Ref
Provide
Output

F3.2
Position

Media

F3.4
Reposition

Media

3rd Level
F3.3.1

Move Recording
Medium to Media

F3.3.2
Transmit Info

to Media

F3.3.3
Store Info
on Media

F3.4 Ref
Reposition

Media

F

F1

F1.1 F1.1

F1.2 F1.2 F1.3F1.3

F1.4F1.4
F2

F2.1F2.1

F2.2F2.2 F2.3F2.3

F2.4F2.4

F3

F1.4F3.4

F1.3F3.3 F1.2F3.2

F1.1F3.1

F4

F4.4 F4.4

F4.3 F4.3 F4.2F4.2

F4.1F4.1

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-22

Figure 4.4-24. Functions Lead to Requirements; Requirements Lead to Physical Architectures

Requirements Management and Synthesis detail the process that turns functions into
Requirements and Requirements into a Physical Architecture. It is important to note that the
next Functional Analysis level is bound and framed by the Requirements and Physical
Architecture refined from the preceding Requirements Management and Synthesis activities
(Figure 4.4-25).

Figure 4.4-25. Requirements and Physical Architecture Frame the Next Functional Analysis Level

When this spiral process completes one rotation, the Functional Analysis process recommences
(Figures 4.4-26 and 4.4-27) at the next lower level and repeats until each function is totally
decomposed into its basic subfunctions, and each subfunction at the lowest level is completely,
simply, and uniquely defined by its Requirements.

Potential
Solutions

CD ROM

Printers

Optical
Disk

Leads to REQUIREMENTS

Lead to

Architecture
Computer
Processor

Computer
Input/Output

Output Device

1st Level

F3
Produce
Output

F0
Generate
Output

F1
Accept

Information

F2
Process
Output

2nd Level
F3.1

Select
Media

F3.3
Record Info

on Media

F4
Provide
Output

F4 Ref
Provide
Output

F3.2
Position
Media

F3.4
Reposition

Media

3rd Level

F3.3.1
Move Recording
Medium to Media

F3.3.2
Transmit Info

to Media

F3.3.3
Store Info
on Media

F3.4 Ref
Reposition

Media

Functional Analysis

Architecture
Computer
Processor
Computer

Input/Output
Output Device

+ Requirements

Frame the
next FA level

1st Level

F3
Produce
Output

F0
Generate
Output

F1
Accept

Information

F2
Process
Output

2nd Level

F3.1
Select
Media

F3.3
Record Info

on Media

F4
Provide
Output

F4 Ref
Provide
Output

F3.2
Position
Media

F3.4
Reposition

Media

3rd Level

F3.3.1
Move Recording
Medium to Media

F3.3.2
Transmit Info

to Media

F3.3.3
Store Info
on Media

F3.4 Ref
Reposition

Media

Functional Analysis

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-23

Affirmative answers to the following questions signify completion of Task 3:

• Has a complete set of Functional Analysis diagrams been prepared?

• Has each function been decomposed to its lowest level within program needs?

• Is each function completely, simply, and uniquely defined by its Requirements?

• Has a description of each function been developed?

• Is the requirements development complete?

Figure 4.4-26. Repeating the Functional Analysis Process at the Next Lower Level

1st Level

F3
Produce
Output

F0
Generate
Output

F1
Accept

Information

F2
Process
Output

2nd Level
F3.1

Select
Media

F3.3
Record Info

on Media

F4
Provide
Output

F4 Ref
Provide
Output

F3.2
Position
Media

F3.4
Reposition

Media

3rd Level

F3.3.1
Move Recording
Medium to Media

F3.3.2
Transmit Info

to Media

F3.3.3
Store Info
on Media

F3.4 Ref
Reposition

Media

BW
Laser Printer

Color
Laser Printer

Ink Jet

Plotter

Potential
Solutions

Architecture

Paper Fed
From Feeder

Printer

Printed Pages
in Output Tray

Leads to

Lead to

REQUIREMENTS

Functional Analysis
1st Level

F3
Produce
Output

F0
Generate
Output

F1
Accept

Information

F2
Process
Output

2nd Level
F3.1

Select
Media

F3.3
Record Info

on Media

F4
Provide
Output

F4 Ref
Provide
Output

F3.2
Position
Media

F3.4
Reposition

Media

3rd Level

F3.3.1
Move Recording
Medium to Media

F3.3.2
Transmit Info

to Media

F3.3.3
Store Info
on Media

F3.4 Ref
Reposition

Media

BW
Laser Printer

Color
Laser Printer

Ink Jet

Plotter

Potential
Solutions

Architecture

Paper Fed
From Feeder

Printer

Printed Pages
in Output Tray

Leads to

Lead to

REQUIREMENTS

Functional Analysis

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-24

Figure 4.4-27. Preceding Requirements and Physical Architectures

Continue To Frame Next Lower Level
4.4.3.4 Task 4: Evaluate Alternative Decompositions
In this task, alternative decompositions of functions (Functional Architectures) and
Requirements at all levels are evaluated. These evaluations are necessary because there is no
single “correct” decomposition; however, not all decompositions are of equal merit. It is
necessary to evaluate alternative decompositions in order to select the decomposition best
suited to the Requirements. There are other reasons to evaluate alternative decompositions.
For example, as a result of Synthesis there may surface design constraints such as the desire
to use commercial-off-the-shelf (COTS) or non-developmental item (NDI) components. Multiple
Functional Architectures may then be produced to accommodate alternatives in accordance
with various combinations of constraints. These are then compared using the Trade Studies
process (Section 4.6) with the design criteria from Synthesis in order to select the Functional
Architecture that most effectively meets mission objectives.
The evaluation of alternative decompositions of functions is subjective and dependent upon
personal preference and taste. The purpose of Task 4 is to ensure that other methods to
conduct the decomposition are evaluated. In this task, personal preference and consensus
among the stakeholders become factors in the selection of the best Functional Architecture.
Any selected Functional Architecture shall reflect the system’s functions. However, variances in
the alternative Functional Architectures may provide a competitive edge to one or more of the
alternatives.
By the end of this process, the Requirements for each subfunction at the lowest levels of the
Functional Architecture are allocated via the Synthesis process (“Task 3: Allocate
Requirements” (Paragraph 4.3.4.3)) to hardware, software, interfaces, operations, or a
database, and then to a specific configuration item. As it is necessary to verify Requirements,

Frame the

1st Level

F3
Produce
Output

F0
Generate
Output

F1
Accept

Information
F2

Process
Output

2nd Level

F3.1
Select
Media

F3.3
Record Info

on Media

F4
Provide
Output

F4 Ref
Provide
Output

F3.2
Position

Media
F3.4

Reposition
Media

3rd Level

F3.3.1
Move Recording
Medium to Media

F3.3.2
Transmit Info

to Media
F3.3.3

Store Info
on Media

F3.4 Ref
Reposition

Media

Functional Analysis

Architecture
Paper Fed

From Feeder

Printer

Printed Pages
in Output Tray

+ Requirements
Frame the
next FA
level

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-25

the objective of Task 4 is to select those decompositions that promote straightforward
Requirements that may be validated and verified. (Validation and Verification (Section 4.12)
further addresses this issue.) In addition, decompositions that allow a single function to be used
at several places within the hierarchy, thereby simplifying development, may be identified.
Task 4 requires “best engineering judgment,” as the “goodness” of each functional
decomposition is evaluated by measuring the degree to which each module displays the
following attributes:

• Performs a single function

• Is a logical task

• Leads to a Requirement(s) that may be separately validated

• Has a single input point and a single output point

• Is independent within each level of the hierarchy (higher independence allows the
implementation of the module independent of the other modules)

Because system design does not occur in a vacuum, it is necessary to consider opportunities to
use COTS or NDI hardware and software. As a result, a subfunction that has already been
implemented in a compatible form on another system may be preferred to one that has not.
The selection of a final system functional decomposition signifies completion of Task 4.
4.4.3.5 Task 5: Document Functional Analysis Baseline
The last task in the Functional Analysis process is documenting the process, including the
selected Baseline as the basis for Requirements Management (Section 4.3) and Synthesis
(Section 4.5). The documentation includes the outputs listed in Figure 4.4-1. At this point, any
necessary revisions or changes to the functional decomposition, sequence and time lines,
functional interfaces, etc., are made to ensure their completeness and consistency with one
another. Also, the products of the Functional Analysis process (e.g., FFDs, functional
descriptions, function interface descriptions, and time lines) are developed. These products
may be documented separately or combined in a Functional Analysis Document (FAD).
Affirmative answers to the following questions signify completion of Task 5:

• Have all of the initial functions been decomposed into subfunctions?

• Do the subfunctions cover the total scope of the parent function?

• Are the functions arranged correctly with respect to the dependence of the functions?

• Have all functional interfaces been defined?

• Have any new functional interfaces between initial functions been identified that were
discovered during the function decomposition process? (These may drive new system
element interfaces.) If so, have the new interfaces been documented in control sheets?

• Has a Functional Analysis document been prepared to document the functional
Baseline?

• Have all functional Requirements been identified and decomposed?

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-26

4.4.4 Outputs of Functional Analysis
4.4.4.1 Functional Architecture
The most common output of the Functional Analysis process is a “living” Functional Architecture
document that contains a tailored combination of the following:

• Functional Architecture Baseline

• Functional interface list

• Alternative decompositions

• FFDs

• Functional time lines and sequences

• Data flow diagrams (DFD) and threads

• N2 diagram

• Other functional descriptions
4.4.4.2 Concept of Operations
In addition to the previous list, the CONOPS may also be an output of the Functional Analysis
process. A CONOPS is a user-oriented document that describes system functional
characteristics for a proposed system from the user’s viewpoint; it is essentially a top-level
narrative Functional Analysis. It explains the existing system, current environment, users, the
interaction among users and the system, and organizational impacts. The CONOPS document
is written in order to communicate overall quantitative and qualitative system characteristics to
the user, buyer, developer, and other organizational elements. The CONOPS aids in
requirements capture and communication of need to the developing organization. Posing the
need in the user’s language helps to ensure that the user is able to more accurately express the
problem. Subsequently, the system engineers have a better foundation upon which to begin the
lower-level Functional Analyses, requirements definition, and initial design of the system.
Not all CONOPS are written as functional analysis documents. In these cases, the CONOPS
would be an input to Functional Analysis rather than an output.
The following is a list of the essential elements indicative of all CONOPS:

• Description of the current system or situation

• Insight into the user’s environment

• Description of the functions to be performed

• Description of the needs that motivate development of a new system or modification of
an existing system

• Insight into the new Requirements

• Opportunity for the developer to recommend alternative solutions

• Description of the operational features of the proposed system

• User’s view of the Requirements
At minimum, there are two levels of CONOPS: (1) NAS Level and (2) System Level CONOPS.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-27

A NAS Level CONOPS is performed at the highest level of the Functional Analysis process and
is a narrative expression of the user’s desired change with some performance indicators. It is a
high-level document that indicates, from the user’s perspective, the desired end-state for the
respective system in the NAS.
A System Level CONOPS is an extension of a NAS Level CONOPS with an emphasis on a
particular system. It is more detailed and substantial, but it is still an expression of the user’s
needs with respect to a specific system within the NAS. It is recommended that a System Level
CONOPS, in particular, have the following characteristics:

• Written in the user’s language using the user’s preferred format

• Written in narrative prose (in contrast to a technical requirements specification)

• Organized so as to tell a story and accompanied by visual forms (diagrams, illustrations,
graphs) and storyboards whenever possible

• Provide a bridge between the user’s needs and the developer's technical requirements
documents

• Describe the user’s general system goals, mission, function, and components

• Evoke the user’s views and expectations

• Provide an outlet for the user’s preferences

• Provide a place to document vague and unmeasurable Requirements (i.e., the user is
able to state his/her desire for fast response or reliable operation); these desires are
quantified during the process of developing the requirements specifications and during
the flowdown of Requirements to the Physical Architecture

• Make the user feel in control

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-28

Figure 4.4-28 serves as a guideline for System Level CONOPS content.

Figure 4.4-28. Content Format for a System Level Concept of Operations

4.4.4.2.1 Operational Services and Environmental Description
The OSED is a comprehensive, holistic Communications, Navigation, and Surveillance/Air
Traffic Management system description. It describes the services, environment, functions, and
mechanizations that form a system’s characteristics.
 “What Is a System?” A system (as defined in Section 2.1) is:

An integrated set of constituent pieces that are combined in an operational or
support environment to accomplish a defined objective. These pieces include
people, hardware, software, firmware, information, procedures, facilities,
services, and other support facets.

The 5M Model, illustrated in Figure 4.4-29, graphically represents this system view. Useful
system descriptions exhibit two essential characteristics: correctness and completeness.
Correctness in a system description means that the description accurately reflects the system
with an absence of ambiguity or error in its attributes. Completeness means that no attributes
have been omitted and that the attributes stated are essential and appropriate to the level of

 1. Introduction
a. System overview
b. Definition of terms
c. References

2. Operational need
a. Operational problems solved
b. Opportunities created
c. Existing operations/functions that require change
d. Organization constraints
e. Actors that will interact with system

3. System justification
a. Capability shortfalls of current system
b. Potential benefits of new system
c. Identi fied priorities of new features

i. Critical
ii. Essential
iii. Routine

d. Assumptions and constraints
4. OSED (include if available)
5. Business impact

a. Impact on current business operations
b. Changes to organization

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-29

detail called for in the description. System descriptions that include all 5M Model elements
achieve these two characteristics.
The 5M Model states that there are five basic integrated elements in any system. These
elements are (1) the functions that the system needs to perform; (2) the human operators and
maintainers; (3) the equipment used in the system, composed of the hardware and software; (4)
the procedures and policies that govern the system’s behavior; and (5) the environment in which
it is operated and maintained.

Figure 4.4-29. 5M Model

RTCA/DO-264, Annex C, contains detailed guidelines for the OSED for use as a starting point.
For the purposes of SE in the FAA, these guidelines were tailored. It is recommended that an
OSED have, at minimum, the information in Figure 4.4-30.

MEDIA:
Environment (operational

and ambient)

Machine:
Hardware and
software used in
the system

Man:
(non-gender specific)
These are the people

who operate and maintain the
system

Management:
These are the

procedures and
policies that guide
operations in the

system

Mission:
These are the

functions that the
system must

perform

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-30

Figure 4.4-30. Guidelines for an Operational Services and Environmental Description

4.4.4.3 Concerns/Issues
Appendix D contains guidance on concerns/issues as a product of Functional Analysis.
4.4.4.4 Tools/Analysis Requirements
Tools/Analysis Requirements for performing Functional Analysis throughout the remainder of
the program’s lifecycle needs to be provided to the Integrity of Analyses process (Section 4.9).
4.4.4.5 Planning Criteria
Any Planning Criteria necessary for performing Functional Analysis throughout the remainder of
the program’s lifecycle needs to be provided to the Integrated Technical Planning process
(Section 4.2).

 1. Operation Service Description: This section of the OSED is used to summarily describe
the air traffic services and operational context of the new capability. This section describes
the new air traffic service from an operator’s viewpoint.

2. Functional description or architecture: This section describes the functions and Functional
Architecture in accordance with Functional Analysis.

3. Procedures: This section describes the existing and new procedures and policies that
govern the system’s operation or maintenance and includes:
a. Operational requirements and regulations, including separation minima
b. Deployment requirements
c. Operational scenarios

4. Human elements of the system: This section describes the operators and maintainers of
the system, including information regarding:
a. Anthropometric requirements
b. Training requirements
c. Specific skill set requirements
d. Human-system integration requirements

5. Equipment and software: This section describes any known hardware and software that is
required for system operation . This section, in particular, may not be appropriate in the
early stages of development.

6. Environment description: This section is an expression of the various conditions in which
the system is operated, including:
a. Operational: The operation al environment includes factors, such as traffic density and

flow, flight phases, traffic complexity, route configuration, type of control, use of visual
or instrument flight rules, etc.

b. Ambient: The ambient conditions refer to visual and instrument meteorological
conditions, altitudes, terrain elevations, and physical conditions, such as
electromagnetic environment effects, precipitation, icing, etc.

7. Nonfunctional requirements: This section describes any other Requirements that are not
covered in the other sections and includes, but is not limited to, the following:
a. Time constraints
b. Information exchanges
c. Exception handling

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-31

4.4.4.6 Constraints
Constraints on trade studies that surface as a result of performing Functional Analysis are to be
provided to the Trade Studies process (Section 4.6).
4.4.5 Functional Analysis Tools and Techniques
Contractors working for the FAA may choose to employ structured analysis models rather than
the FFDs preferred by FAA. To facilitate communication between FAA system engineers and
these contractors, it is recommended that FAA system engineers understand these models in
order to engage in technical conversations with contractors who employ them.
4.4.5.1 Tools
Analysis tools may include but are not limited to general SE and design/simulation aids.
Because requirements represent the basic thread through SE, Functional Analysis data shall be
interoperable with requirements definition information. The results of the Functional Analysis
process shall be captured in order to modify system requirements and other derived products.
The selection of tools shall ensure that the data is transportable and able to be integrated with
other related Functional Analysis results. A list of tools that may be used to perform Functional
Analysis is available on the International Council on System Engineering Web site
(www.incose.org).
4.4.5.2 Techniques
In addition to the techniques described in “Task 2: Organize Functions Into Logical
Relationships” (Paragraph 4.4.3.2), this paragraph covers several alternative approaches that
FAA system engineers may come in contact with from organizations that apply techniques other
than FFDs. These techniques are provided in order to cover two issues: (1) cases in which time
line sequence diagrams and FFDs do not adequately address FAA needs; and (2) cases in
which contractors use these techniques to perform Functional Analysis, and the FAA engineers
need to understand what they mean. The alternatives include the following:

• Hierarchical functional block diagramming

• Modern structured analysis

• Models and simulation

• Thread analysis

• Object-oriented analysis (OOA)
4.4.5.2.1 Hierarchical Functional Block Diagramming
By listing the functions for an expansion of one block on a higher-tier block diagram, the
engineer is actually engaging in function outlining, which is equivalent to hierarchical block
diagramming. Rather than building sequences of functions in FFDs, the engineer may build an
indentured list or hierarchy of functions where, in order to accomplish a particular function, it is
necessary to complete the immediate lower-tier functions first.
Generally, this process is easier to follow than a sequence-oriented model. Thus, the question
arises: Why build a sequence- or flow-oriented diagram when the goal is a hierarchical physical
architecture? It is easier for system engineers to move from a hierarchical functional diagram to
a hierarchical architecture diagram than from a sequence-oriented functional diagram to a
hierarchical physical architecture diagram. However, therein lies the problem. Engineers
employing hierarchical functional diagrams often define a functional architecture based on the
last physical architecture they worked on, which generally causes a one-to-one correspondence

http://www.incsoe.org/

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-32

between their functional and physical architectures. The danger in this approach is the potential
for the engineer to fail to consider all of the alternative implementations of the needed
functionality and, subsequently, miss opportunities to take advantage of new technology. It is
more difficult to move from a sequence-oriented functional model to a hierarchical physical
architecture diagram; however, that difficulty encourages a more comprehensive examination of
methods to implement exposed functionality.
4.4.5.2.2 Modern Structured Analysis
Modern structured analysis offers a more free-form analytical environment than the block-
oriented models. The modern structured analysis model is constructed using DFDs that feature
bubbles rather than blocks, a data dictionary (DD), and process specifications (p-spec).
4.4.5.2.2.1 Data/Control Flow Diagrams and Context Diagrams
Data/control flow diagrams (D/CFD) graphically model the processes that transform data/control
in a system. These diagrams model the system’s work as a network of activities that accept
and produce data/control messages. Alternatively, they are also used to model the system’s
network of activities as work accomplished on a processor. Each successive level of D/CFDs
represents the internal model of the transformations contained in the previous level of D/CFDs.
The context DFD—the ultimate DFD—consists of one bubble depicting the system connected to
terminators drawn as blocks and named to identify the external inputs and outputs of the
system. The bubble of the context DFD is decomposed to expose more detailed needs of the
system. The lower-tier DFDs, of which there may be hundreds or even thousands for a complex
problem, consist of only four objects:

• Bubbles (drawn as simple circles) identify needed computer processing. Bubbles have
functionality that may be further decomposed in a lower-tier DFD or defined in a p-spec.
P-specs are written only for the lowest-tier bubbles in the diagrams. Needed product
behavior may be explored and illustrated by structured English, tables, or state diagrams
within the p-spec.

• Directed line segments (arrows) show the flow of data between the bubble and
temporary data stores.

• Temporary data stores (represented by a pair of parallel lines) identify a need to
temporarily store data created in a bubble or applied from outside the system.

• Data sources and external inputs are represented by rectangles.
Figure 4.4-31 illustrates the application of DFDs and the top-down decomposition process used
to produce a system model.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-33

Figure 4.4-31. Data Flow Diagram

Building a system model by interviewing users usually begins with the processes defined at the
primitive level and data defined in forms and manual files. Figure 4.4-32 illustrates part of a
model built from user interviews. After building the model, the next task is to organize the data
flows logically and then collapse the lower-level functions into higher-level functions. Figure
4.4-33 illustrates a logically organized version of the model built from interviews.
The DFD function titles, when wrapped in “shall statements,” become requirements statements.

Monitor and
Control

Ground Terminal

Data Condition Status Antenna Commands

Data Conditioning
Commands

Antenna Status

Operational
Commands

Data Routing
Status

Data Routing
Commands

System Status

Data Routing
Status

Data Routing
Commands

Operations
Monitoring

and Processing

Current
Commands

System
Status

Data Conditioning

Data Condition
Status

Antenna Commands
Antenna Status

Data
Conditioning
Monitoring/

Control

Antenna
Monitoring

Control

Data
Conditioning
Subsystem

Data Routing
Subsystem

Antenna
Subsystem

Operations

Data Routing
Monitoring

Control

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-34

Figure 4.4-32. Primitive Data Flow from User Interviews

Figure 4.4-33. Logically Organized Data Flow

4.4.5.2.2.2 Data Dictionary
DDs are documents that provide a standard set of definitions of data flows, data elements, files,
databases, and processes for a specific level of system decomposition. These documents aid
communication across the development organization. The DD also defines data items
mentioned in the transformation specifications. For every data line and every data store
illustrated on every DFD, a unique line in a DD that clearly defines the data item is required.

Part Request
Form 222

Dottie

Marian

Purchase Request
and Validate
Part Request

Form 222

Purchase Order

George

Validate
Part Request

Form 222

Requested
Part

Parts
Storage

Part and
Vendor

Information

Inventory
Current
Stock

Part Request
Form 222 Verify Request

and Check
Availability

Prepare
and Issue

Purchase Order

Purchase Request
and Validate
Part Request

Form 222

Purchase Order

Issue Part
Update

Inventory

Validate
Part Request

Form 222

Requested
Part

Parts
Storage

Part and
Vendor

Information

Inventory
Current
Stock

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-35

A DD defines the content of each data item, table, and file in the system. P-specs describe the
capabilities that each process is required to provide. The specifications may be written in
structured English and/or in the form of decision tables and decision trees. State diagrams
graphically depict the logical states that the system may assume. Associated process
descriptions specify the conditions that require fulfillment for the system to transition from one
logical state to another.
When working from a set of customer documents, a top-down approach is used to decompose
customer-defined processes. As each process is decomposed, so is the data. Only the data
that a process requires to produce the specified outputs is documented in a DD. Functional
decomposition usually proceeds to a level where the requirements for each lower-level function
are stated on one page or less (i.e., the primitive level). Interaction with the customer may be
necessary to decompose and define data elements at lower levels.
4.4.5.2.2.3 Process Specifications
For every lowest-tier bubble in the DFD analysis, it is necessary to write a p-spec that contains
the p-spec for the bubble. This specification may be phrased in normal English text, structured
English that follows a particular computer tool syntax, tables, state diagrams, or any
combination of these constructs. P-specs, at the primitive level, when wrapped with “shalls”
subsequently become requirements statements.
4.4.5.2.2.4 State Transition Diagram
After the DFDs and DD are complete, the next step is to identify the various states the system
may assume and to produce diagrams depicting how the system transitions between states. It
is suggested that a top-down approach, such as a state transition diagram (STD), be used to
identify various states of the system, working down through the subsystem.
An STD is a graphical model of the dynamic behavior of a system—it is a sequential state
machine that graphically models the time-dependent behavior of a control transformation.
Figures 4.4-34 and 4.4-35 are examples of STDs for system and subsystem functions.
Descriptions of how the system transitions from one state to another become “shall statements”
in the requirements document.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-36

Figure 4.4-34. State Transition Diagram for System Functions

Figure 4.4-35. State Transition Diagram for Subsystem Functions

4.4.5.2.3 Hatley-Pirbhai Extension to Modern Structured Analysis
Because the traditional modern structured analysis process has proven inadequate for modeling
real-time systems, the Hatley-Pirbhai Extension to modern structured analysis was created.
This model extended the requirements model of modern structured analysis process to include
an additional construct called a control flow diagram (CFD)—an augmentation of the
corresponding DFD that has control as well as data processing functions. The CFD has the
same bubbles as its companion DFD. The data lines that join the bubbles on the DFD are
related only to the data associated with processing needs. The data lines shown on the CFD
are only those data items related to control functions. This model may be considered a special

System
Initialization

Fail Perform
Readiness Tests

----- Ready

Subsystem x
Readiness Test

Subsystem y
Readiness Test

----- Subsystem z
Readiness Test

----- Data Conditioning
and Routing

Subsystem z
Readiness Test

Acquisition

System
Initialization

Fail Perform
Readiness Tests

----- Ready

Subsystem x
Readiness Test

Subsystem y
Readiness Test

----- Subsystem z
Readiness Test

----- Data Conditioning
and Routing

Subsystem z
Readiness Test

Acquisition

System
Initialization

Fail Perform
Readiness Tests

----- Ready

Subsystem x
Readiness Test

Subsystem y
Readiness Test

----- Subsystem z
Readiness Test

----- Data Conditioning
and Routing

Subsystem z
Readiness Test

Acquisition

Initialization

Unstow Ready ----- Readiness
Test

Stow AutoTrack

Serial
Scan

Bar
Scan

Acquire -----

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-37

case of modern structured analysis and is particularly useful when the problem entails difficult
control problems.
4.4.5.2.4 Models and Simulation
Models are abstractions of relevant characteristics of a system that are used to understand,
communicate, design, and evaluate (including simulation) the system. They are used before the
system is built and while it is being tested or in service. A good model has essential properties
in common with the system/situations it represents. The nature of the properties it represents
determines the uses for the model. A model may be functional, physical, and/or mathematical.
For complex system problems, it is necessary to analyze and design a number of different
systems, each of which is represented by a specific model. The different models permit
individual investigation of different aspects. These different modeling perspectives are
incrementally constructed and integrated in a unified description (system model) to maintain a
holistic system perspective from which the emergent properties of the system are deduced and
verified.
The system model emphasizes the interactions of the objects in the context of the system,
including the objects in the environment. Object semantics represent the components of a
system, their interconnections, and their interactions when they are responding to the stimulus
from the objects in the environment. These object semantics are partitioned into a static as well
as dynamic modeling representation that describes the system’s structure and behavior,
respectively.
In this sense, the models embody the decisions made over the different steps of the Lifecycle
Engineering process (Section 4.13). The models are developed as part of the decisionmaking
process and support the evolution of the system design process as well as the iterative nature
of the engineering in an environment where changes and enhancements to the models are
managed in a controlled manner.
4.4.5.2.5 Thread Analysis
One major challenge to Functional Analysis is the development of software that implements the
desired behavior of the system. Because system behavior is primarily implemented in software,
a critical issue in system development is “how system engineers interact with the software
engineers to ensure that the software requirements are necessary, sufficient, and
understandable.” This problem is addressed at the practitioner level, and experience has
shown that the approach of passing paper specifications between systems and software
developers does not yield satisfactory results.
Stimulus-condition-response threads are an excellent way to control the software development
process, including translation from system to software requirements, design verification, review
of software test plans, and integration of software and system testing. The threads enumerate
the number of stimulus-condition-response capabilities to be tested. Threads also tie to
performance requirements. Experience in the past 20 years on a variety of thread versions
shows that such approaches are both feasible and effective.
4.4.5.2.5.1 The Use of Threads
System and software engineers shall work together to identify the system-level threads and the
subset of the threads that the computer system supports. In this context, a thread consists of a
system input, system output, description of the transformations to be performed, and conditions
under which the transformations hopefully occur. Such threads may be represented textually or
graphically in a variety of ways, some of which are supported by tools. The following guidelines
apply to the use of threads:

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-38

• The threads satisfy the need for efficient communication between system and software
developers

• The identification of a thread from input to output allows the identification of the
subthread to be allocated to the processing subsystem and, hence, software

• The description of stimulus-condition-response threads eliminates the ambiguities found
in current specifications

• The description of threads is inherently understandable, particularly if provided in some
graphical format

• The use of such threads aids in evaluating the impact of proposed changes
In the following steps, the development of software requirements is evolutionary, starting with
allocation of processing requirements to a processing system and ending with publication and
review of the software requirements.
4.4.5.2.5.2 Step 1: Deriving the System-Level Threads for Embedded Systems
No matter how the system description is developed, even if it is no more than the identification
of system functions for different modes of operation, system inputs and outputs shall be
identified in order to anchor the specification to reality. This process starts with the initial
scenarios that describe the system’s intended operations, which may be rewritten into the form
of stimulus-condition-response threads.
To illustrate, consider the bank automated teller machine (ATM) system, which, by processing
ATM cards and personal identification numbers (PIN), enables customers to perform banking
transactions. Figure 4.4-36 presents two top-level scenarios that describe the top-level
behavior of the ATM system when presented with an ATM card and a PIN. The two scenarios
are PIN is accepted and PIN is rejected. From the scenarios or the integrated behavior, the
stimulus-condition-response threads are identified. This set of threads may be specified in a
number of notations. Figure 4.4-37 presents the stimulus-condition-response threads in a
functional format. Note that the conditions for each of the threads are to avoid ambiguity.
These conditions are a combination of two factors:

• The mode of the system, which determines which kind of input is expected

• The combination of values of the system state information and the contents of the input

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-39

Figure 4.4-36. Top-Level Scenarios in Thread Analysis

Thus, a correct PIN yields a menu, while an incorrect PIN results either in a message to “try
again” or the machine “swallowing” the card, depending on the mode of the system. These
conditions require that a thread be associated with the conditions in order to make them
testable. To show the conditions explicitly, the “Accept PIN” function is decomposed to show its
input-output behavior under different conditions.

Figure 4.4-37. Stimulus-Condition-Response Threads

PIN

Display PIN
RequestAccept PIN

Accept PIN

Accept PIN

Accept PIN

ATM Card

PIN

PIN
Display

“Contact Bank”

Display
“Incorrect PIN”

Display
Menu

Thread

1

2

3

4

Sample ATM Threads

Accept
Card

Accept
PIN

Display
Menu

Display
Menu

Display PIN
Request

PIN

ATM Card

Accept
PIN

Display
“Incorrect

PIN”

Display PIN
Request

ATM Card

PIN

Display
“Incorrect PIN”

Accept
Card

Scenario 1 Bad PIN Scenario 2 Good PIN

Scenarios

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-40

4.4.5.2.5.3 Step 2: Decomposing the Threads to the Subsystem
It is necessary to decompose functions to the level where functions are uniquely identified by
their requirements. This process is illustrated in Figures 4.4-36 through 4.4-40. In Figure
4.4-36, the top-level scenarios are defined; in Figure 4.4-37, examples of stimulus-condition-
response threads are provided; in Figure 4.4-38, stimulus-condition-response threads are
defined with their conditions; in Figure 4.4-39, the threads are defined in condition format; and in
Figure 4.4-40, the system-level function “Accept PIN” is decomposed into functions to read the
card (allocated to a card reader) and the functions and conditions allocated to the computer.
Usually, most or all of the conditions are allocated to the computer system, with mechanical
functions allocated to the other less intelligent components. Hence, most of the system threads
yield a thread, with conditions, allocated to the computer subsystem, of which the majority is
then allocated to the computer software with the software driving the computer hardware
requirements. Thus, there is a direct traceable relationship between the system level, computer
system level, and software level of requirements.
Figures 4.4-38 through 4.4-40 identify the difference between the system and computer system
threads. The system uses a card reader component to read the card, a terminal component to
accept push button inputs from customers, and a processor component to provide the
intelligence to process the requests. Note that this process results in the requirement for the
computer system to direct its threads to translate “card info” and “PIN info” to various output
displays.

Figure 4.4-38. Threads Identified With Conditions

PIN

Display PIN
RequestAccept Card

Accept PIN
PIN OK

Accept PIN
PIN not OK
< 3 times

Accept PIN
PIN not OK
= 3 times

ATM Card

PIN

PIN
Display

“Contact Bank”

Display
“Incorrect PIN”

Display
Menu

Thread

1

2

3

4

Threads With Conditions

Conditions

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-41

Figure 4.4-39. Threads in Condition Format

Figure 4.4-40. System-Level Functions Decomposed

4.4.5.2.5.4 Step 3: Reviewing the Requirements and Design
Irrespective of the requirements format, computer system-level threads need to be traceable
through the document. If a thread is untraceable, it signifies an omission in the requirements. If
additional threads are identified that do not deal with interface designs or computer system-level
fault detection/recovery, such threads may represent unnecessary processing; and, if so, it is
necessary to omit them. To illustrate, Figure 4.4-41 presents a simple software design in which
a top-level program control calls lower-level units of code to execute operations.

Yes

Yes

No No

No

PIN

PIN

PIN

Display
“Incorrect PIN”

Display Menu

Display
“Contact Bank”

PIN
OK?

PIN
OK?

PIN
OK?

3 times?

3 times?

Threads in Condition Format

Terminal

Terminal

Terminal

Accept
Card

PIN

ATM Card

PIN

PIN

Thread

1

2

3

4

Accept
Card

Display
“Contact Bank”

Card Reader Computer

Decomposed Threads

Display PIN
Request

Display
Menu

Display
“Incorrect PIN”

Accept PIN
PIN OK

Accept PIN
PIN OK

Accept PIN
PIN not OK
< 3 times

Accept PIN
PIN not OK
< 3 times

Accept PIN
PIN not OK
= 3 times

Accept PIN
PIN not OK
= 3 times

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-42

Threads 1 through 4 are traceable through this design, thus validating it. The same approach
works when an object-oriented design presents a number of objects implemented as
independent software processes. When software design occurs that divides the overall
software into computer software configuration items (CSCI), computer software components
(CSC), and computer software units (CSU), the above process of decomposing and allocating
the system-level threads into the components is repeated for each level of component. Again, if
a thread is untraceable, it signifies an omission in the design. The system engineer traces the
allocated system requirements to the software requirements review, which is followed by the
CSCIs, CSCs, and CSUs for the software preliminary and critical design reviews.
If the software designers trace the computer system to software design threads as part of the
requirements satisfaction demonstration, then the system engineer need only verify the
completeness of the traceability. Tools strengthen the reliability of such a traceability
evaluation. If the software designers do not perform this activity, then it is recommended that a
joint team of system and software engineers perform the tracing to verify the design in
preparation for the design reviews. In any event, the software-level threads shall be identified in
order to provide systematic test planning.

Figure 4.4-41. Tracing the Threads

4.4.5.2.5.5 Step 4: Tracing the Threads to the Test Plans
It is recommended that the collection of threads be exercised by the collection of tests outlined
in the test plan—at the software level, computer system level, and the system level. This
collection may be represented by a database and displayed in a cross-referenced matrix
showing the relationship of system to software thread, software thread to software design
threads, and threads to test cases at the various levels of integration, enabling the tools to
ensure that every level of thread is tested at some point.
It is strongly recommended that the software threads be used to drive the test planning process
using the concept of builds of software. For a system test, other components are added, and
the system test threads are tested. For the ATM example, the difference is that in the software
only test, the software receives information in the format expected from the card reader; in the

Control
Card Reader

Read
Terminal

Provide
Services

Accept
Deposit

Provide
Withdrawals

Show
Balance

T1

T3
T4

Mapping S/W Threads onto a S/W Design

Control

Check
Password

T2

Control
Card Reader

Read
Terminal

Provide
Services

Accept
Deposit

Provide
Withdrawals

Show
Balance

T1

T3
T4

Mapping S/W Threads onto a S/W Design

Control

Check
Password

T2

Control
Card Reader

Control
Card Reader

Read
Terminal

Read
Terminal

Provide
Services
Provide
Services

Accept
Deposit
Accept
Deposit

Provide
Withdrawals

Provide
Withdrawals

Show
Balance
Show

Balance

T1

T3
T4

Mapping S/W Threads onto a S/W Design

ControlControl

Check
Password

Check
Password

T2

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-43

system test, the card reader component itself is used as the source of the data when an ATM
card is the input.
This same approach is also used to construct the system-level test plans in a way that exploits
the early availability of computer software that provides user-oriented capabilities. Thus, an
early build of software may be integrated with a card reader to perform a test of Thread 1
through the system before the remainder of the software is developed. If the card reader is not
available until later in the test cycle, then other threads may be tested first.
4.4.5.2.5.6 Notation
Several kinds of notations may be used for tracking the threads, but these notations usually fall
under requirements- and design-oriented notations. Requirements-oriented notations describe
the inputs, conditions, and outputs, while the design-oriented notations describe the threads
with respect to the major design elements. Because both eventually describe the same
stimulus-condition-response information, their use is essentially equivalent (though the design-
oriented notation is more useful for actually defining the builds of software).
4.4.5.2.5.7 Conclusion
System engineers need to take the lead in constructing a sufficient process for system and
software engineers to communicate, as it is the responsibility of the communicator to
communicate in a language that the recipient understands. It is not feasible for system
engineers to wait for software requirements methodologies to stabilize and accomplish this
objective because software requirements and design techniques show no signs of stabilizing.
The problem needs to be addressed within the existing context of multiple software
requirements languages.
4.4.5.2.6 Object-Oriented Analysis
4.4.5.2.6.1 Early Versions
Early models advanced by Yourdon (2000) focused on objects that encapsulated computer
processing and data, thus ending the separate analysis of these two previously inseparable
facets of any computer software entity and, thereby, providing a tremendous improvement in
software analysis. The model encouraged problem space entry using objects that represented
the physical entities in the problem and solution space. Functionality and behavior of the
problem space was explored based on these objects; therefore, it was not possible to follow the
concept of form follows function when applying it. Early OOA models may be effective in
analyzing systems with heavy precedence but problematic when exploring unprecedented
problems.
Most authors who supported early OOA encouraged identification of objects that reflected
elements of the problem space, that these objects be linked and organized into major subject
areas, and that they be followed by refining the objects by identifying object functionality in
terms of a DFD and behavior using state diagrams. Note that it was not easy to begin with
functionality or behavior, rather one had to explore functionality and behavior in terms of
previously defined objects.
4.4.5.2.6.2 Unified Modeling Language
4.4.5.2.6.2.1 Background
The UML is a language for specifying, visualizing, constructing, and documenting the artifacts of
software systems as well as for business process modeling.1 The UML represents a collection

1 OMG Unified Modeling Language Specification, Version 1.4, September 2001.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-44

of “best engineering practices” that have proven successful in modeling large and complex
systems. Rational Software and its partners developed the UML, which is now an industry
standard (www.omg.org/uml). It is widely supported, and there are numerous commercial
packages available (www.incose.org) that may be used to develop UML-compliant models.
These packages provide a collection of functionality ranging from purely drawing UML diagrams
(low cost) to full round-trip engineering with model syntax checking and code generation (higher
cost).
The principal benefit obtained from employing a standardized modeling language is that it
provides a common framework for communicating system design and behavior between the
organizations and various individuals, including users, architects/developers, and operators,
involved with the system under development. Developing a model for an industrial-strength
software system prior to its construction or renovation is as essential as having a blueprint for a
building. Comprehensive models are essential for communication among project teams to
ensure architectural soundness. As the complexity of the system increases, so does the
importance of efficient modeling techniques.
The UML focuses on a standard modeling language, not a standard process. Although the UML
has to be applied in the context of a process, experience has shown that various organizations
and problem domains require a different process. The UML authors promote a development
process that is use-case driven, functional architecture centric, iterative, and incremental.
However, this specific development process is not required or enforced by the language. The
UML merely provides the capability for:

• Model elements—fundamental modeling concepts and semantics

• Notation—visual rendering of model elements

• Guidelines—idioms of usage within the trade
Additionally, the UML provides extensibility and specialization mechanisms to extend core
components. Though the UML is object-oriented by default, it is independent of particular
programming languages.
4.4.5.2.6.2.2 Development Artifacts
The decision regarding which diagrams to create is largely dependent upon the system under
development. Focusing on the relevant aspects of the system is critical in the abstraction
process. The UML provides a rich notation to describe the static and dynamic behaviors of the
system through several diagrams. These diagrams provide complementary views of the
system, which are then developed and used by the various stakeholders.
The UML diagrams fall into the four following groups: use-case diagrams, class diagrams,
behavior diagrams, and implementation diagrams.
Use Case Diagram: A use-case diagram depicts one or more use-cases with its associated
primary and secondary actors. An actor defines a role that a person plays with respect to the
system. A use-case, by definition, yields an observable result of value to its primary actor. A
secondary actor may be invoked by the use-case and provides a service. Actors may have a
primary role in one use-case and a secondary role in another use-case. Use-cases are
particularly well suited for capturing requirements. Figure 4.4-42 is an example of a use-case
diagram.
Class Diagram: A class diagram provides a static view of the system’s classes and depicts the
relationships between the various classes. A class is a fundamental construct in all object-
oriented languages and includes the notion of data and functions that are logically grouped.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-45

Individual class diagrams may depict attributes (e.g., data) and operations (e.g., functions) with
varying levels of detail as necessary.
Behavior Diagrams: Behavior Diagrams are used to depict the dynamic operation of the
system and include statechart diagrams, activity diagrams, sequence diagrams, and
collaboration diagrams. A statechart diagram typically describes all possible states that a
particular object may inhabit and how the object’s state changes with regard to external events.
Activity diagrams describe sequences of activities in which an activity typically represents a real-
world process. Sequence diagrams depict a time-ordered flow of events between classes and
actors and frequently describe a complex interaction between a small number of classes.
Similarly, collaboration diagrams depict a time-ordered flow of events between actors and
classes using a different layout; they are frequently drawn at a more abstract level.
Collaboration diagrams are well suited for identifying underlying design patterns. Figures 4.4-43
and 4.4-44 are examples of behavior diagrams.
Implementation Diagrams: Implementation diagrams include both component and
deployment diagrams. A component diagram depicts the various components and their
dependencies in which a component typically represents a physical module of code.
Alternatively, a deployment diagram depicts the physical relationships between software and
hardware components.

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-46

Figure 4.4-42. Day Visual Flight Rules Prefiled Flight Plan Use-Case Diagram

Subm it D VFR F light Plan

F ly Airc raf t

F ile D VFR F light Plan

Monitor F lights

U pdate Act iv e F lights

Perf orm Intercept

Maintain R adio C om m w/Airc raf t

Air Tax i Pil ot
(from Business Use-Case Model)

U S C ustom s / Air D ef ense

Air Tax i
(from Business Use-Case Model)

F ile F light Plan

Get W x Brief

Am end F light Plan
Pre-F ile D VF R F light Plan

Air c raf t D epart ure

Act i va te F light Plan

R elease Transponder C odes

Ass ign Transponder C odes

Enter D eparture Tim e

Init iate Air Tax i SAR

Init iate SAR

C l ose F light Plan

AF SS Spec ialis t
(from Actors)

Sce nario 2:

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-47

Figure 4.4-43. Day Visual Flight Rules Prefiled Flight Plan Activity Diagram

END

Close Flight
Plan

Complete DVFR
Flight Plan

Initial Wx Brief

Aircraft
Departure

Arrival

Fly Aircraft

No Arrival

Scenario 2: DVFR Pre-filed Flight Plan

File Flight Plan

Assign Transponder
Codes

Release Transponder
Codes

Amend Flight
Plan

Enter Departure
Time

Activate Flight
Plan

Initiate SAR

Provide Wx
Brief

Maintain Radio
Comm w/AC

Pre-File DVFR
Flight Plan

START

Initiate Air Taxi
SAR

[If time > ETA & no radio contact]

Perform
Intercept

[If time > ETA]

Monitor Flights

Update Active
Flights

Flight Plan Data

En Route

US Customs / Air Defense Air TaxiNASPilot

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-48

Figure 4.4-44. Day Visual Flight Rules Prefiled Flight Plan Collaboration Diagram

4.4.6 Functional Analysis Process Metrics
Candidate metrics used to measure the overall process and products of Functional Analysis
include the following:

• Percent of analysis studies completed (schedule/progress)

• Depth of the functional hierarchy as a percentage versus the target depth

• Percent of performance requirements allocated at the lowest level of the functional
hierarchy

Of the seven general measurement categories (see Table 4.1-1), the two that are applicable to
Functional Analysis are Process Performance and Product Quality. In addition to the measures
listed above, other candidate measures for Functional Analysis are provided in the table below.
It is recommended that each effort tailor these measures and add other applicable project-
specific measures to ensure the contribution of necessary information to the decisionmaking
processes.

 : Air T axi

 : Ai r T axi Pi lot

 : FSDPSDisplay
<<l ist>> - arrivals : DVFR_Fli...

 : AFSS Specia l ist

 : DirectUserAccessT erm inal
- DVFRFlightPlan : DVFR_FlightPl...

 : HFRadio

2. storeDVFRFlightPlan()

 : AFSSTeleph oneS ystem
- WxBrief : WxBrief

 : NationalAirspaceDataInterchangeNetwork
 : Fl ightServiceAutom ationSystem

- DVFRFlightPlan : DVFR_FlightPl...

 : Fl ightServiceDataProcessingSystem
<<queue>> - DVFRFlightPlan : DVFR_FlightP...

4. routeMsg()

Pi lot provides
rem ain ing fl ight plan
detai ls (e.g. ACID,
P-T ime, Dest, ET E)

14. selectT ransponderCode()

 : US Customs / Air
Defense

Air T axi has previously
developed LOA with FAA
defining procedures
involving partia l fl i ght
plans.

17. createDepartureMessages()

19. moni torFl ights()

 : G A_Airc raft.class

1. fi leDVFRFlightPlan()

20. m ain tainRadioContact()

21. main ta inRadioContact()

7. completePreFi leFP()
8. getWxBrief()

12. ac tivateFl i ghtPla n()

23. closeFl ightPlan()

6. updateFl ightPlan()

15. assignTransponderCode()

16. enterDepa tureTi me()

25. releaseT ransponderCode()
10. receiveFl ightPlan()

11. updateDepartureList()

5. receiveDVFRFlightPlan()

9. receiveM sg()

18. receiveDepartureM essages()

3. receiveM sg()

13. activateFl ightPlan()

24. c lose Fl ightPlan()

22. fl y()

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-49

Table 4.1-1. Candidate Measures for Functional Analysis*

Schedule
and

Progress

Resources
and Cost

Product Size
and Stability

Product
Quality

Process
Performance

Technology
Effectiveness

Customer
Satisfaction

Achievement
of specific
milestone
dates

Total effort
compared to
plan

Documentation
of interfaces

Technical
performance

Process
productivity

Technology
impact on
product

Customer
survey results

Test status Resource
utilization

Requirements Defects Process
activity cycle
time

Baseline
changes

Performance
rating

 Standards
compliance

Defect
containment

*Note: These measures are only general examples to indicate the type of information that might be
included in the individual section measurement matrix.

4.4.7 References
1. Blanchard, Benjamin S. System Engineering Management. 2nd edition. New York, NY:

John Wiley & Sons, Inc., 1998.
2. Blanchard, Benjamin S., and Walter J. Fabrycky. Systems Engineering and Analysis.

2nd edition. Englewood Cliffs, NJ: Prentice Hall, 1998.
3. Defense Systems Management College. Systems Engineering Fundamentals. Fort

Belvoir, VA: Defense Systems Management College Press, 1999.
4. Federal Aviation Administration. System Safety Management Program. Washington,

DC: U.S. Department of Transportation, Federal Aviation Administration, January 2004.
http://www.asy.faa.gov/risk/sshandbook/contents.htm

5. International Council on Systems Engineering. Systems Engineering Handbook.
Version 2.0. Seattle, WA: International Council on Systems Engineering, 2000

6. RTCA, Inc. Guidelines for the Approval of the Provision and Use of Air Traffic Services
Supported by Data Communications. RTCA DO-264. Washington, DC: 14 December
2000. http://www.rtca.org/.

7. SAE International. Certification Considerations for Highly-Integrated or Complex Aircraft
Systems. ARP 4754. Warrendale, PA: SAE International, 1996. http://www.sae.org/.

8. SAE International. Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment. ARP 4761. Warrendale, PA: SAE
International, 1996. http://www.sae.org/.

9. Sage, Andrew B., and William B. Rouse, eds. Handbook of Systems Engineering and
Management. New York, NY: John Wiley & Sons, Inc., 1998. http://www.wiley.com/.

10. Shishko, Robert. NASA Systems Engineering Handbook. NASA SP-6105. Washington,
DC: National Aeronautics and Space Administration, June 1995.

11. U.S. Department of Defense. Standard System for System Safety. MIL-STD-882D.
Washington, DC: U.S. Department of Defense, 10 February 2000. http://acc.dau.mil/.

http://www.sae.org/

NAS SYSTEM ENGINEERING SECTION 4.4
VERSION 3.0 09/30/04

4.4-50

12. Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs, NJ: Prentice Hall,
1988. http://www.wiley.com/.

http://www.wiley.com/

	Functional Analysis (Satisfies EIA/IS 731 FA 1.2 and iCMM PA 4)
	Introduction to Functional Analysis
	
	
	
	
	Process:

	Beginning Boundary Task

	Functional Analysis Objectives
	Process Overview

	Inputs to Functional Analysis
	Functional Analysis Process Tasks
	Task 1: Define Top-Level Functions (From Inputs)
	Task 2: Organize Functions Into Logical Relationships
	Sequence Relationships
	Network Diagrams
	Time Line Sequence Diagrams

	Functional Flow (Input-Function-Output) Logical Relationships
	Functional Flow Diagrams
	The FFD, the FAA’s recommended technique for Functional Analysis, is a multi-tier, time-sequenced step-by-step diagram of the system’s functional flow. FFDs usually define the detailed, step-by-step operational and support sequences for systems, but the
	Functional N2 Diagrams
	Integrated Definition for Function Modeling Diagrams

	Task 3: Decompose Higher-Level Functions Into Lower-Level Functions
	Task 4: Evaluate Alternative Decompositions
	Task 5: Document Functional Analysis Baseline

	Outputs of Functional Analysis
	Functional Architecture
	Concept of Operations
	Operational Services and Environmental Description

	Concerns/Issues
	Tools/Analysis Requirements
	Planning Criteria
	Constraints

	Functional Analysis Tools and Techniques
	Tools
	Techniques
	Hierarchical Functional Block Diagramming
	Modern Structured Analysis
	Data/Control Flow Diagrams and Context Diagrams
	Data Dictionary
	Process Specifications
	State Transition Diagram

	Hatley-Pirbhai Extension to Modern Structured Analysis
	Models and Simulation
	Thread Analysis
	The Use of Threads
	Step 1: Deriving the System-Level Threads for Embedded Systems
	Step 2: Decomposing the Threads to the Subsystem
	Step 3: Reviewing the Requirements and Design
	Step 4: Tracing the Threads to the Test Plans
	Notation
	Conclusion

	Object-Oriented Analysis
	Early Versions
	Unified Modeling Language
	Background
	Development Artifacts

	Functional Analysis Process Metrics
	References

